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The problem of the damping of shock-waves at great distances from their 
point of origin was first examined by Crussard, who found the asymptotic 
law for their motion in a straight channel of ~onst~t-cross-sectional 
area El]. The laws of propagation of weak cylindrical and spherical 
shock-waves in a homogeneous medium were established by different methods 
in the works of Landau E21, Khristi~~vich [31, Sedov f41, Whitham 153, 
and a number of other authors. The first solution of the problem of the 
behavior of a shock-wave of small amplitude in a nonhomogeneous medium 
is given in the paper of Whitham [Sl, where it is assumed that the dis- 
tribution of the parameters of the gas satisfies spherical symmetry both 
in the equilibrium state and in that arising from the motion of the wave. 
Otterman !‘I] investfgated the damping of a shock-front in a stratified 
quiescent medium of constant temperature. The general problem of the pro- 
pagation of shock-waves in a moving nonhomogeneous medium was treated in 
the works of Gubkin [8], Polianskii [9], and in [IO]; there no restric- 
tions were imposed on the character of the initial distribution of pres- 
sure, density, temperature, or speed of the gas particles. 

Asymptotic laws for the variation of gas parameters along a shock- 
wave at great distances from a body in a steady uniform supersonic stream 
have been given by Landau 121 and Whitham [ll, 121 under the assumption 
that the flow is either plane or axisymmetric. The interaction of shock 
waves in a plsne parallel stream with a stratified structure was in- 
vestigated by Biley 1131. The behavior of shock-waves far from bodies in 
arbitrary supersonic flows was studied in [14L], where the difference be- 
tween unsteady and steady problems was also discussed. In the paper of 
Friedrichs 1151 a theory of the second approximation was developed, which 
permits establishing with a very high degree of accuracy the laws of 
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damping of shock-waves in flows whose paraaeters are deterglined by two 
independent variables. In the parts relating to unsteady motion, the re- 

sults of Priedrichs agree with those of Crussard [l]. 

It mwt be remarked that all the cited works are based in 8~ essential 
row Won the assuaption that the entropy of a partfcle is unchanged in 

transition through the shock-front. This assumption is justified, because 

the change in entropy behind a shock-wave of small amplitude is pro- 

POrtiOnal to the cube of the change of any of the other quantities deter- 

mining the state of the gas, and the investigation is subject to equa- 

tions retaining only ieading terms. In the monograph of Zel’dovich [ls] 

it is shown for the example of one-dimensional eotion taking place in a 

cxlfndrfcal channel that the problem of damping of a shock-wave can be 

treated by some method based on calculation of the dissipation of energy 
at the fri?ut. The Value of the dissipation is completely determined by 

the change in energy, which it was shown could be neglected in at1 other 

methods. An analogous idea was expressed by DuMond, Cohen, Panofsky, and 

Deeds [2?f . In [I81 the indicated method was applied to the solution of 
the problem of motion of a shock-wave of small amplitude in a nonhomo- 

geneous quiescent medium. It was shorn that in this case also the differ- 

ence between the law of dissipation of a weak shock-wave and the acoustic 

one is completely determined by the quautity of energy irreversibly trans- 

formed into heat. Calculation of the dissipation of energy at shock-waves 

is also the basis of the work of L~ghthill [19f and Phythian [ZOf , in 
which the accuracy of Friedrichs’ theory El51 is investigated. 

In the present work, which is a development of 1181, an equation is 
derived that is a ~onseqme~e of the law of conservation of energy 

applied to acoustic waves propagating in an arbitrary nonbo~geneo~~ 

noving medium, All fuxther investigations are carried out on the basis 

of this equation, together with the additional assumption that the width 

of the region of disturbed gas motion is small compared with the radius 

of curvature of the shock~front and with tbe distance at which the pars- 

meters of the fnitfal medium are essentially changed. It Permits sfgsifi- 
cant simplification of the equation mentioned above and, by Integration, 

leads to a forauls expressing the change in pressure increment at a shock- 

front in the approximation of geometrical acoustics [2X-231. In addition, 

by comparison with acoustics the dissipation of the anp~itude of the wave 
is accounted for, 83 before, by the dissipation of energy arising at the 
shock transition. Transforming the line of reasoning, it beComes possible 

to reduce the problesr of propagation of waves of small amplitude in an 

arbitrary medium to the solution of 8 system of two ordinary differential 

equations for the magnitude of the pressure Increment behind tbe front 

and 8 measure of the acoustic impulse of the wave. 

1, Acoustic approximation. “$%e change in energy of a e;as moving 
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in a gravitational field is determined by the equation 

Here t is the time, v the velocity of a particle, g the acceleration 

of gravity, p the density, E the specific internal energy, and w the 
specific enthalpy. The value of UJ is related to a and the pressure p by 
the formula 

PW ==pe+p 

We consider the pro~gation of an acoustic wave in a ~o~~ogeneous 
moving medium. \te will suppose that in the undisturbed state the velocity 
v. of a particle, the pressure pe, density pot specific entropy so, in- 
ternal energy ab, and specific enthalpy w0 do not change with time and 
are given as functions of the coordinates xi. In this case the equations 
of gas dynamics, written for the initial state of the gas, take the form 

div pav, = 0, (vaV) vg 4 p;l grad pa = g, v,grad se = 0 (1.2) 

We simplify Equations (1.1) using the smallness of the amplitude of 
an acoustic wave. For this purpose we expand the quantity pw in a series, 
where as independent thermodynamic variables we choose the pressure p and 
specific entropy s. Let T denote the temperature. According to a known 
thermodynamic relation 

dw = T ds -+ p-l dp 

Using this equality, we write the desired expansion 
_ _ 

for pw, in which 
we retain terms of first and second orders of smallness: 

PW = POW, + (1 + 3) P' + lPoT0 + w. (+$)Js) + 

+ -$[& + wo (~),I P’” + (y$- + won) P’S‘ + 

+ -+ [ 2To (yg), + 5 + wo (~)~I SIB 

Here a is the speed of sound, 
sure, p’ and s‘ the deviations 

cp the specific heat at constant pres- 
of pressure and entropy from their initial 

values, and the subscript zero denotes values in the undisturbed state. 

We substitute the given expression into Equation (1.11, which ex- 
presses the law of conservation of energy in a moving continuous medium. 
To simplify the resulting relation we use Formula (1.2), and also the 
continuity equation, Euler’s equations, and the equation of conservation 
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of the entropy of a particle, in which it is necessary to retain 
quadratic terms. As a result we have 

Here V’ is the perturbation velocity vector of a particle of the 
medium, and the di~nsionless coefficient ma is given by the formula 

where V denotes the specific volume, equal to l/p. For a perfect gas 
with cp = const and y denoting Poisson’s adiabatic exponent, the coeffi- 
cient RQ, is equal to (y + 1)/Z, and the quantity 

1 +J -- L=-_ 
poaoa ( ) 

1 
aso P % 

If the medium is quiescent in its undisturbed state (vO = 01, we ob- 
tain the equations derived in &?I; if moreover the characteristics of 
the gas in the equilibrium state are constant in all directions then the 
equations that follow from (1.3) express, as is known [22,23], the law 
of conservation of energy for an acoustic wave propagating in a uniform 
medium. 

We now consider the motion of a thin acoustic wave, that is, a wave 
in which the width of the zone of disturbance of the flow i\* is small 
compared with the principal radii of curvature of the shock-front and 
with the distance at which the parameters of the initial medium are 
significantly changed. The amplitude and direction of such a wave scarcely 
deviate from their earlier values in a distance of the order of the width 
A* of the disturbed region. As A+ -t 0, relations hold to a first approxi- 
mation among the parameters of the gas that are determined by plane flow 
of impulse of small amplitude: 

V' = vk, v'=-Jf-, St - 0 (1.4) 

Here II is the unit vector normal to the wave front. Equation (1.S) is 
valid also for a weak shock transition. 

In a thin acoustic wave the density of energy e and the density of 
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acoustic enerby flux q should also be connected by a relation that 
characterizes one-dimensional flow of impulse: 

q = e (aon .f vJ (1.5) 

Substituting Equation (1.1) into the relation (1.3) we obtain the 
basic equation of geometrical acoustics 

(1.6) 

We introduce the derivative along a ray on which an element of the 

wave moves 

d 
dt= -$- -I- f&n -I- v&7 

Ihe coordinates xi of the ray and the variation along it of the com- 
ponents ni of the normal n are determinell by the solution of a system of 
ordinary differential equations 

dq 
- =U& + Voi, 

dt 
@h_ 
dt 

- (?Q?lj-S$j) 

(&~j = 0 for i+i and hii= for i=i) 

Here we use the customary tensor notation of summation over the re- 
peated indices j and k, which take 

Vl’riting the second of Fquations 
scalar product with V* we obtain 

the values 1, 2, 3. 

(1.7) in vector form and taking its 

dn 
“0 dt = [(v,n) n - vol grad a0 + @on) [n (no) vol - n (VOV) ‘01 

We take advantage of this relation and rewrite the coefficient of the 

free term 

n (no) vo + 0%) - 1) div v. = (aon + vo) grad In ‘F 

Now the basic equation of geometric acoustics takes the form 

-$- + div (a,n + vo) e = 0, e = (a, _t v,n) $$ (1.8) 

Equation (1.8) expresses the law of conservation of energ for pro- 
pagation of a thin wave of small amplitude in a moving medium. It shows 
that the relationship (1.5) between the quantities e and q actually 
holds. This circumstance is explained by the fact that upon passage of a 
short acoustic impulse through a given point of space the energy flux 
through unit area inclined at this point normal to the direction of the 
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ray speed up + v. is completely determined by the transferred quantity 
together with the wave energy, We note that the value of energy density 
e of an acoustic wave propagating in a moving medium differs by the 
factor fae + v~n)/a~ from the value of the energy density of a wave pass- 
ing through a motionless homogeneous 122,231 ox nonhomogeneous [181 
medium. When v. = 0 then 

(a0 + v@n) /a, = 1. 

An equation analogous to (1.8) was found by I3lokhintsev [231 in the 
study of acoustic oscillations whose parameters are given in the product 
form A expt iy) . Here A is a slowly varying function of the coordinates 
and time, and the phase y(t, xi) of the wave is an “almost linear” func- 
tion. 

Integration of Equation (1.8) gives 

e = e, exp [- i div (uagn + vo) (dt] 0.9) 
fc 

Here e,, denotes the density of acoustic energy at the initial instant 

t 0’ =t 

We consider an elementary ray tube, that is a tube of small crass- 
sectional area whose generators are rays. In the case when v. # 0, the 
direction of the normal n to the wave front does not coincide with the 
ray direction. We denote by u. = \1 [(rr,,rr + ~~~~1 the ray speed with which 
the wave travels through space. Its projection uOn onto the normal n is 

'On = '0 +v#l. lhe area f of an element of the front of acoustic im- 
pulse contained within the ray tube is related to the area u of its 
cross-section by the equation 

Using the last relation, it is easy to show that 

Here Uoon and f& denote respectively the projection of the ray speed 

onto the normal and the area of the front of elementary impnlse under 
consideration at the initial instant t = to. In the case when v. = 0 in 
the whole space, we then have [21] 

f = f.erP(i aadiv n dt ) 

exp [S div (a$a + v,) d] = n% f 

10 



Energy of acoustic tPave* 1299 

Equation (1.9) now takes the form 

%onfo 
e=e - O uonf 

(1.11) 

Equation (1.11) is valid for the entire field of disturbed flow, in- 
cluding also the acoustic approximation for a shock-front being consider- 
ed. It determines the variation of acoustic intensity along the path of 
an element of the wave. Let p,,‘, tzaa and poo denote respectively the pres- 

sure increment, equilibrium speed of sound, and equilibrium density at 
the initial instant t =: to. From Equation (1.11) follows the law of vari- 
ation of the amplitude of an acoustic wave 

P’ = PO 2T5?!!&2 (1.12) 

If Equation (1.6) is integrated along a ray, the expression for the 
quantity p’ can be put into the following form (which was obtained from 
different considerations by Keller [Zl] ) 

p’ zpo) If PO@0 1 -_ 
PcvQo L f 

L = exp I s t ’ fa,d iv n + k,d iv v. + II (no) v,l&} 

10 
(k,=2?%-1) (1.13) 

comparison of Equations (1.12) and (1.13) gives 

We give another derivation of Equation (1.12). For this we consider 
the motion of an acoustic impulse along an elementary ray tube, where it 
is assumed that the length of the tube is sufficiently great that in the 
time of motion the wave does not intersect its end sections uI and cr2. 
We suppose that all incremental quantities in the acoustic impulse of 
the shock-front have a triangular profile. Although this approximation 
is not essential, it allows the following calculations to be simplified. 

We integrate Equation (1.8) over a fixed volume V. bounded by the sur- 
face of the ray tube under consideration and its two end-sections a1 and 

02’ Since the volume V. does not change with time, we obtain 

a 
at edV = 0 

s 
V, 

Using r!Zation (1.10) and the assumption made above concerning the 
character of the distribution of the parameters of the gas in the zone 
of disturbed motion, we have 
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(1.14) 

Here A denotes 
acoustics, and p’ 

Ihe quantity 

the wave lenght in the approximation of geometrical 
the pressure increment at the shock-front. 

is the total energy of an elementary acoustic impulse contained within 

the ray tube of cross-sectional area u. The equation written above there- 
fore shows that the total energy of each elementary impulse remains con- 
stant in the present approximation. An analogous derivation is given in 
[18] for waves propagating in a quiescent medium. 

We note that the wave length h in the acoustic 

to [91 

hd$EL 
%on 

approximation is equal 

(1.15) 

Integration of Equation (I, 14) using the last relation leads to Equa- 
tion (1.12). 

We consider now the motion of a shock-wave of small amplitude in the 
approximation beyond that of geometric acoustics, In this approximation 
the speed of a shock-front is different from the speed of propagation of 
an acoustic wave, and its amplitude is damped according to a different 
law than (1.12) or (1.13). ‘Lel’dovich observed [Xl, that the damping of 
a plane shock-wave in a straight tube is entirely determined by the dis- 
sipation of energy arising from wave compression. In [la) it was shown 
that the law of damping of a shock-wave of arbitrary form that propagates 
in a nonhomogeneous quiescent medium is also directly related to the 
quantity of acoustic energy irreversibly transformed into heat. We show 
that this fact is general; that is, the nonlinear laws of damping of 
shock-wave in arbitrarily moving media are explained by the dissipation 
of energy arising at shock transitions. 

2. Dissipation of energy at a shock-front. To simplify the 
calculations we will assume as before that the perturbation quantities 
in the acoustic impulse bounded by the shock-front have triangular pro- 
files. Let p,’ denote the amplitude of the shock-wave and At the length 
of the impulse in the approximation beyond geometrical acoustics. Using 
the results obtained, we can show that the amplitude p,’ of the shock- 
wave is determined by the Formula (8) to (10). 
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Here dl is the element of length of the ray, equal to uOdt. The wave 
length A* varies according to the Equation (9) to (10) 

(2.2) 

We calculate the change in unit time of the total energy of an element- 

ary acoustic impulse contained within the ray tube of cross-sectional 
area o. ‘Ihe area f of the shock-front bounded by this tube is related to 
u by Equation (1.101, so that the total energy E* of the acoustic impulse 
with triangular profile for the pressure increment is, according to the 
results of the preceding section, equal to 

According to relations (2.1) and (2.2) this expression can be trans- 
formed into the form 

?he change in energy of the impulse under consideration is determined 

by the derivative &*/dt, whose value is easily calculated using Equation 

(2.1). We have finally 

dE 
_A_=_- 
dt (2.3) 

We show that this change in energy of an elementary acoustic iinpulse 
is proportional to ths magnitude of its dissipation at the shock com- 
pression. ‘Ihe value of this dissipation, produced by viscosity and heat 
conduction, may be calculated within the framework of an ideal fluid 
using the entropy change s ‘ that occurs at the shock-front. ‘Ihe value 
of s ’ is a quantity of th:rd order of smallness with respect to the 
presHure increment p, ’ , given by the equation 

Using this relation we find the energy that is dissipated in the form 
of heat in unit time at an element of the shock-front of area f. Let 0, 
denote the dissipated energy. Its change in unit time is evidently given 
by the equation 
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dQ, f 
dt = 6 p&7,3 

-_._3L fpf (2.4) 

which agrees, except for a factor uO,,/ao taken with reversed sign, with 
the expression appearing on the right-hand side of @ation (2.3). As 
was already observed above, the value of the energy density e of an 
acoustic wave differs by this factor when propagating in a quiescent and 
a moving medium; at the same time Equation (2.4) for dQ*/dt always main- 
tains its same form. In fact, in the expression for the flux of mass 
across a shock-front there appears the normal component of the velocity 
vector of particles in a system of coordinates moving with the discon- 
tinuity surface. 

For weak shock-waves this velocity component agrees to a first 
approximation with the speed of sound aa. When va = 0, then 

dE, i dt = - dQ, I dt 

We now invert our reasoning so that, avoiding the calculation of the 
pressure increment p, ’ in the approximation of geometric acoustics, we 
can immediately find the law of damping of shock-waves of small ampli- 
tude moving in nonhomogeneous media. The change in energy of an element- 
ary acoustic impulse of length A, contained within a ray tube of cross- 
sectional area IJ and having at the front a pressure increment p,* is de- 
termined on the basis of the equations given above as 

d 

dt 

Tne quantity A+ appearing here satisfies the relation [lOI 

d&_ 
dt 

(2.5) 

(2.6) 

The system of ordinary differential equations (2.5) and (2.6) should 
be integrated with the initial conditions 

PI, = P’ot a* = h, at t =ZO (2.7) 

The solution of the system of Equations (2.5) and (2.6) satisfying 
the conditions (2.7) can be obtained in an elementary way. We divide the 
first of these equations by the quantity ~*~u~~*‘~/(~~=~~~ and the 
second by A*. Combining the resulting expressions we find 
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Integrating the previous equation, taking account 
ditions, gives 

kP’. = 

of the initial con- 

(2.8) 

‘lhis relation expresses the law of variation of the impulse 

J* = l/2 h,fP, ‘/U()n of an element of positive phase of the wave in its 

motion along the ray tube. 

We now multiply Equation (2.6) by A , replacing the product A$+’ by 
Expression (2.8). As a result we obtaiz a linear equation in A,* 

Using the initial conditions, we obtain as a solution of the preceding 
equation Formula (2.2), detefinining the wave length h . ‘lhe pressure in- 

crement p, ’ at the shock-front is found, with the use*of (2.8), in the 

form (2.1). 

3. Steady flows. As was shown in [14], the results obtained above 
for unsteady shock-waves propagating in a nonhomogeneous medium cannot 
be applied immediately to the calculation of steady supersonic gas motion. 
For steady supersonic flow, which by definition is characterized by the 
condition a/at = 0, we have 

a,+v(+l=o (3.1) 

In this case the rays lie wholly on the characteristic surface 
q(xi) = 0, whereas for unsteady processes of expansion waves the rays 
intersect their front q( t, xi) = 0 in the xi space, never being tangent 
to these surfaces. 

We denote by no the unit vector normal to the characteristic surface 
carrying the zero value of pressure increment. ‘Ihe equation governing 
the change in width of the disturbed region, which by analogy with un- 
steady motion we will also call the wave length and denote by the letter 
A, has within the framework of geometrical acoustics the form [14] 

$ = h (n,V) (a0 + vd3) (3.2) 

‘lhe value of the ray speed u0 for steady flow is \I (v,,* - oo2); there- 
fore in Equation (3.2) the time t is connected with the length 1 of the 
ray by the relation dl = \I (vo2 - ap2)dt. We n&e that the solution of 
this equation is not, generally speaking, given by Equation (1.15), which 
determines the wave length in unsteady processes. Equation (1.12) for the 
change of amplitude of an acoustic wave in unsteady processes likewise 
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cannot be used imnediately for the calculation of steady supersonic flows. 
In fact, in this case according to Equation (3.1) both the quantities 

uon and noon vanish, and Equation (1.12) loses its siLqi.ficance. 

In order to obtain the law of variation of the pressure increment p’ 
along a shock-wave far from a body in a steady supersonic stream, we turn 
again to the result of Equation (1.6). Using the relation (3.21, we trans- 
form it to 

div (a,n + vg) e = 0, 

Here e denotes as before the density of 
to within the constant factor t~~~,‘u,,~,, the 

. 

a&p’* 

e=hoPoooi (3.3) 

acoustic energy. \!k note that . ^ 
energy density ~~~‘~/(p~a~~) 

01 unsteady acoustic motron may be put in the same form with the aid of 
Equation (1.15). Ihe density of energy of waves propagating in a fixed 
medium differs from the expression for energy density in the present case 

by the factor haoo~hoao. 

Integration of Equation (3.31 leads to Fquation Cl.?), from which 
follows the law for the variation of the amplitude p’ of a wave in the 
acoustic approximation: 

(3.4) 

Here, as before, (I denotes the cross-sectional area of an elementary 
ray tube. 

Henceforth, as in the case of unsteady wave motion, we will assume for 
simplicity t!lat in the disturbed region bounded by the shock-front all 
perturbation quantities have triangular profiles. Henceforth we will de- 
note by p‘ the pressure increment at the shock-wave. He now take, on the 
characteristic surface carrying the undisturbed values of the gas para- 
meters, an arbitrary point that we use as the origin for the ray passing 
through it. Trough the,chosen point we pass a plane perpendicular to the 
ray direction, and in this plane we construct a small closed contour con- 
sisting of the line of its intersection with the shock-wave and the 
characteristic surface where p’ = 0, and also of two neighboring normals 
to the indicated surface. We consider the ray tube whose generators pass 
through the sides of the rectangle consisting of the contour we have con- 
structed. It is evident that the cross-section of such a tube has at any 

point the form of a parallelogram; its area can be identified with the 
quantity u in Equation (3.4), since the width of the disturbed region is 
regarded as small compared with the principal radii of curvature of the 

s!lock-front and the distance at which the parameters of the basic stream 

are essentially changed. k’ e now introduce on the characteristic surface 
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carrying zero values of p’ a small rectangle, one of whose sides serves 
as a side of the closed contour considered earlier. The rectangular 

cylinder with generators parallel to the normal to the characteristic 

surface bounds in the ray tube under consideration a certain element of 

the wave. This element as a whole is carried along the ray in the first 

approximation with speed u,,, and deforming acquires the shape of a 

parallelopiped. ‘Ihe dimensions of the parallelopiped in the ray direction 

change proportional to the ray speed uO. 

If as before we denote by f,the frontal area of an element of the wave, 

the following relation is easily seen to hold 

IJsing this, we can put Equation (3.4) into the form 

p’ = pfo$!- v- Poaofo - 
Pooaoof 

(3.5) 

We note that Expression (1.12) is transformed to the same form using 

Equation (1.15). 

\Ve show that the form of Equation (3.5) is not dependent upon the 

chosen form of the wave element. In fact, we consider an element of the 

wave bounded by an arbitrary cylindrical surface with generators initial- 

ly parallel to the normal to the characteristic surface carrying the un- 

disturbed values of the parameters of the gas. We integrate Equation 

(3.3) over the volume of the element under consideration, which is con- 

tinuously deformed as it moves along the ray tube. Taking into account 

the assumption made above regarding the character of the distribution of 

the gas parameters in the disturbed flow region, we have 

d a&h”p’” 
_-= 

dt h0p0ajj 
0 

Integration of this equation, which is analogous to Equation (1.14), 

leads to Equation (3.5). 

‘l%is thus shows that also in the case of steady gas motion the ray 

tube is a channel for the transmission of energy in the disturbed flow 

zone. 

Ilie factor 1, appearin g in Keller’s equation (1.13) takes the form 

We turn now t.o the investigation of the law of damping of a shock-wave 
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far from a body in steady supersonic flow in the approximation beyond 
geometrical acoustics. 

Using the results obtained, we have [14] 

(3.7) 

Here, as in the preceding section, asterisks indicate values of the 
gas parameters in the approximation beyond acoustics, h denotes the wave 
length in linear theory, and dl = uodt. 

‘I’l-te total energy E* of an element of the wave with a triangular profile 
of pressure increment is equal to 

In accordance with E;quations (3.6) and (3.71, we transform this rela- 
tion into the form 

lhe change of energy in unit time for the element of the wave under 
consideration is given by the derivative 

This expression, taken with reversed sign, agrees to within a factor 

&#&aO with the value (2.4) of the derivative dY)*,‘dt, which determines 
the dissipation of energy at a shock-front of area f. As noted above, the 
value of energy density differs by this factor in steady flow from the 
value for an acoustic wave passing through a quiescent t~di~. When the 
oncoming stream is uniform, ha,O/h,aO = 1. 

Reversing the line of reasoning as in the previous section, we can ob- 
tain the law of damping of a shock-wave far from a body in a flow with- 
out calculating p’ in the approximation of geometrical acoustics. We will 
not dwell upon the corresponding calculations in detail. 

In conclusion we consider supersonic flow past a body in a stream with 
constant velocity vg whose other parameters depend upon the coordinate 
x3 rzleasured along one of the axes perpendicular to vo. Such a case can be 
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found, for example, when a body moves in a quiescent atmosphere parallel 
to the plane of the earth, and the density, pressure, and temperature of 
the air depend only on altitude. For simplicity all phenomena are de- 
scribed in a system of coordinates moving with the body, where the flow 
is steady; but for the calculation of the wave length h in the approxima- 
tion of geometrical acoustics it is convenient to change to non-moving 
coordinates connected with the earth, Ihen h is given by Equation (1.15) 

and not by the more complicated solution of Equation (3.2). Of course 
one expression for h can be transformed into the other, so that it is 
easy to convince oneself imnediately that they check. In the present 
case Fquation (3.2) takes the form 

dl 2.. (a@qa, dt= a0 

However, the operator (a,nVl is, as shown in Section 1, an ordinary 
derivative along a ray in a system of coordinates related to the earth. 

Taking now d/dt to mean a derivative in this system of coordinates, 
we transform the preceding equation to 

dl h dao 
dt = a0 dt 

From this Equation (3.9) follows again. 

Equation (1.15) for h can be used whenever the change to the system 
of coordinates in which the body is moving does not violate the steadi- 
ness of the initial flow. However, the proof that this equation gives 
the solution of Equation (3.2) is very complicated in the general case. 
Without giving the corresponding arguments, we point out that it rests 
essentially on the connection with the equations of the bicharacter- 
istics (1.7). 

The author is indebted to G.I. Barenblatt for interest in the work 
and discussion of the results obtained. 
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