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The problem of the damping of shock-waves at great distances from their
point of origin was first examined by Crussard, who found the asymptotic
law for their motion in a straight channel of constant-cross-sectional
area [1]. The laws of propagation of weak cylindrical and spherical
shock-waves in a homogeneous medium were established by different methods
in the works of Landau [2], Khristianovich [3], sedov [4], Whitham [5],
and a number of other authors. The first solution of the problem of the
behavior of a shock-wave of small amplitude in a nonhomogeneous medium

is given in the paper of Whitham [6]. where it is assumed that the dis-
tribution of the parameters of the gas satisfies spherical symmetry both
in the equilibrium state and in that arising from the motion of the wave,
otterman [7) investigated the damping of a shock-front in a stratified
quiescent medium of constant temperature., The general problem of the pro-
pagation of shock-waves in a moving nonhomogeneous medium was treated in
the works of Gubkin [8], Polianskii {9}. and in [10]; there no restric-
tions were imposed on the character of the initial distribution of pres-
sure, density, temperature, or speed of the gas particles.

Asymptotic laws for the variation of gas parameters along a shock-
wave at great distances from a body in a steady uniform supersonic stream
bave been given by Landau (2] and Whitham [11.12] under the assumption
that the flow is either plane or axisymmetric. The interaction of shock
waves in a plane parallel stream with a stratified structure was in-
vestigated by Riley [13]. The behavior of shock-waves far from bodies in
arbitrary supersonic flows was studied in [14], where the difference be-
tween unsteady and steady problems was also discussed. In the paper of
Friedrichs [15} a theory of the second approximation was developed, which
permits establishing with a very high degree of accuracy the laws of
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damping of shock-waves in flows whose parameters are determined by two
independent variables. In the parts relating to unsteady motion, the re-
sults of Friedrichs agree with those of Crussard [1).

It must be remarked that all the cited works are based in an essential
way upon the assumption that the entropy of a particle is unchanged in
transition through the shock-front. This assumption is justified, because
the change in entropy behind a shock-wave of small amplitude is pro-
portional to the cube of the change of any of the other guantities deter-
mining the state of the gas, and the investigation is subject to equa-
tions retaining only leading terms. In the monograph of Zel’ dovich [16]
it is shown for the example of one-dimensional motion taking place in a
cylindrical channel that the problem of damping of a shock-wave can be
treated by some method based on calculation of the dissipation of energy
at the front. The value of the dissipation is completely determined by
the change in energy, which it was shown could be neglected in all other
methods. An analogous idea was expressed by DuMond, Cohen, Panofsky, and
peeds [17]. In [18] the indicated method was applied to the solution of
the problem of motion of & shock-wave of small amplitude in a nonhowmo~-
geneous quiescent medium. It was shown that in this case also the differ-
ence between the law of dissipation of a weak shock-wave and the acoustic
one is completely determined by the gquantity of energy irreversibly trans-
formed into heat. Calculation of the dissipation of energy at shock-waves
is also the basis of the work of Lighthill [19] and Phythian [20], in
which the accuracy of Friedrichs’ theory [15] is investigated.

In the present work, which is a development of {18}. an equation is
derived that is a consequence of the law of conservation of energy
applied to acoustic waves propagating in an arbitrary nonhomogeneous
moving medium., All further investigations are carried out on the basis
of this equation, together with the additional assumption that the width
of the region of disturbed gas motion is small compared with the radius
of curvature of the shock-front and with the distance at which the pars-
meters of the initial medium are essentially changed. It permits signifi-
cant simplification of the equation mentioned above and, by integration,
leads to a formula expressing the change in pressure increment at a shock-
front in the approximation of geometrical acoustics [21-23]. 1n addition,
by comparison with acoustics the dissipation of the amplitude of the wave
is accounted for, as before, by the dissipation of energy arising at the
shock transition. Transforming the line of reasoning, it becomes possible
to reduce the problem of propagation of waves of small amplitude in an
arbitrary medium to the solution of & system of two ordinary differential
equations for the msgnitude of the pressure increment behind the front
and a measure of the acoustic impulse of the wave,

1. Acoustic approximation. The change in energy of a gas moving
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in a gravitational field is determined by the equation

2 5(Lte)+dive (24 u)v—pvg =0 (1.1)

Here t is the time, V the velocity of a particle, g the acceleration
of gravity, p the density, & the specific internal energy, and w the
specific enthalpy. The value of w is related to ¢ and the pressure p by
the formula

pw = pe + p

We consider the propagation of an acoustic wave in a nonhomogeneous
moving medium. We will suppose that in the undisturbed state the velocity
v, of a particle, the pressure p,, density p,, specific entropy s,, in-
ternal energy €,, and specific enthalpy w, do not change with time and
are given as functions of the coordinates x.. In this case the equations
of gas dynamics, written for the initial state of the gas, take the form

div pav, = 0, (voV) Vo +pot grad p = g, vgrad 5, =0 (1.2)

We simplify Equations (1.1) using the smallness of the amplitude of
an acoustic wave, For this purpose we expand the quantity pw in a series,
where as independent thermodynamic variables we choose the pressure p and
specific entropy s. Let T denote the temperature. According to a known
thermodynamic relation

dw =Tds -+ pldp

Using this equality, we write the desired expansion for pw, in which
we retain terms of first and second orders of smallness:

pw = poo + (1 + 322) P’ + [poTls +wo (55 ] +
e (5] (G ) e
+“’;1:‘(2 (e )t png'*‘ (aso)]s
Here a is the speed of sound, c, the specific heat at constant pres-

sure, p’ and s’ the deviations of pressure and entropy from their initial
values, and the subscript zero denotes values in the undisturbed state.

We substitute the given expression into Equation (1.1), which ex-
presses the law of conservation of energy in a moving continuous medium,
To simplify the resulting relation we use Formula (1.2), and also the
continuity equation, Fuler's equations, and the equation of conservation
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of the entropy of a particle, in which it is necessary to retain
quadratic terms. As a result we have

) + dW{p "+ %(pov

o :oa) Vo] +

+ eV’ (v V) v, “‘n"g‘g.‘%‘?/z vegrad po—

-§~ Fl (PO”

— p'svograd [ (2) |4 o5z (5E), v -grad py =0 (1.3)

Here v’ is the perturbation velocity vector of a particle of the
medium, and the dimensionless coefficient m; is given by the formula

- 1 (3319)
0 2pe%2,3\ Vet /s

where V denotes the specific volume, equal to 1/p. For a perfect gas
with ¢, = const and y denoting Poisson's adiabatic exponent, the coeffi-
cient m, is equal to (y + 1)/2, and the quantity

1 (6‘1)) 4

poao® \ 98 ¢

If the medium is quiescent in its undisturbed state (v = 0), we ob-
tain the equations derived in [18]; if moreover the characterzst;cs of
the gas in the equilibrium state are constant in all directions then the
equations that follow from (1.3) express, as is known [22,23], the law
of conservation of energy for an acoustic wave propagating in a uniform
medium,

We now consider the motion of a thin acoustic wave, that is, a wave

in which the width of the zone of disturbance of the flow A is small
*

compared with the principal radii of curvature of the shock-front and
with the distance at which the parameters of the initial medium are
significantly changed. The amplitude and direction of such a wave scarcely
deviate from their earlier values in a distance of the order of the width
A, of the disturbed region. As A - 0, relations hold to a first approxi-
mation among the parameters of the gas that are determined by plane flow
of impulse of small amplitude:

v

v = v'n, v’ mpfao , s =0 (1.4)

Here m is the unit vector normal to the wave front. Equation (1.4) is
valid also for a weak shock transition.

In a thin acoustic wave the density of energy e and the density of
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acoustic energy flux ¢ should also be connected by a relation that
characterizes one-dimensional flow of impulse:

q = e (agh + V) (1.5)
Substituting Equation (1.4) into the relation (1.3) we obtain the

basic equation of geometrical acoustics (L.6)
V)

8 P ~— 1} div vyl =0

p* :
— ——— "
0t peag® + div P ag® (aon ' 0) Potd

We introduce the derivative along a ray on which an element of the
wave moves
d 2
= = a0 T (@ -+ Vo)V
The coordinates x; of the ray and the variation along it of the com-

ponents n; of the normal n are determined by the solution of a system of
ordinary differential equations

dz; dn; day vy,
—r = Qo + Voi, — = (nin; — &) ( + nk 573) (1.7)

(8;5=0 for i=~J and §;=1 for i=)

Here we use the customary tensor notation of summation over the re-
peated indices j and k, which take the values 1, 2, 3.

Writing the second of Equations (1.7) in vector form and taking its
scalar product with v, we obtain

VoIl — [(ven) n — Vo] gradag + (Ven) [n (0Y) Vol — B (vgT) Vol

We take advantage of this relation and rewrite the coefficient of the
free term

n (nY) vy + (me — 1) div vy = (aen + v,) grad In

ag -+ vont
s
Now the basic equation of geometric acoustics takes the form

%+ div (@ + V) e = 0, e = (ap -+ Vqn) (1.8)

Poay®
Equation (1.8) expresses the law of conservation of energy for pro-
pagation of a thin wave of small amplitude in a moving medium. It shows
that the relationship (1.5) between the quantities e and q actually
holds. This circumstance is explained by the fact that upon passage of a
short acoustic impulse through a given point of space the energy flux
through unit area inclined at this point normal to the direction of the
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ray speed agn + v, is completely determined by the transferred quantity
together with the wave energy. We note that the value of energy density
e of an acoustic wave propagating in a moving medium differs by the
factor (a0 + von)/a0 from the value of the energy density of a wave pass-
ing through a motionless homogeneous [22,23] or nonhomogeneous [18]
medium. When v = 0 then

(aq + ven) /ag = 1.
An equation analogous to (1.8) was found by Blokhintsev [23] in the

study of acoustic oscillations whose parameters are given in the product
form A exp(iy). Here A is a slowly varying function of the coordinates

and time, and the phase y(t, x;) of the wave is an "almost linear" func-
tion.
Integration of Equation (1.8) gives
t
e = ey exXp [«-— S div (agn + v,) dt] (1.9

&

Here e, denotes the density of acoustic energy at the initial instant
t = tg.

We consider an elementary ray tube, that is a tube of small cross-
sectional area whose generators are rays. In the case when v, # 0, the
direction of the normal m to the wave front does not coincide with the
ray direction. We denote by z, =[(am + vo)z} the ray speed with which
the wave travels through space. Its projection u,, onto the normal n is
ug, = ag + van. The area f of an element of the front of acoustic im-
pulse contained within the ray tube is related to the area o of its
cross-section by the equation

=1 ...u_o..G (1-10)

Using the last relation, it is easy to show that

t
; = Yo 1
exp [5 div (agn + v,) dt] = i o
Here uy, and f, denote respectively the projection of the ray speed
onto the normal and the area of the front of elementary impulse under
consideration at the initial instant ¢ = t;,. In the case when v, =0 in
the whole space, we then have [21]
t
f = foexp (S aodiv n dt)

%
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Equation (1.9) now takes the form

— g 2emfo (1.11)

Equation (1.11) is valid for the entire field of disturbed flow, in-
cluding also the acoustic approximation for a shock-front being consider-
ed. It determines the variation of acoustic intensity along the path of
an element of the wave. Let p,’, a,, and p,, denote respectively the pres-
sure increment, equilibrium speed of sound, and equilibrium density at
the initial instant t = t;. From Equation (1.11) follows the law of vari-
ation of the amplitude of an acoustic wave

v gt S0%0n Potgfo
Pr=po oy V' seaef (1.12)
If Equation (1.6) is integrated along a ray, the expression for the

quantity p’ can be put into the following form (which was obtained from
different considerations by Keller [21])

t

' , 1 1 . .
P =P, "/P:)::o - L = exp {—Z-S [a,divn —I—kodlvvo-i—n(nv)vo]dt}
ty

(ko = 2mg —1) (1.13)
Comparison of Equations (1.12) and (1.13) gives

L= oty / f

%a%oon fo

We give another derivation of Equation (1.12). For this we consider
the motion of an acoustic impulse along an elementary ray tube, where it
is assumed that the length of the tube is sufficiently great that in the
time of motion the wave does not intersect its end sections o, and o,.
We suppose that all incremental quantities in the acoustic impulse of
the shock-front have a triangular profile. Although this approximation
1s not essential, it allows the following calculations to be simplified.

We integrate Equation (1.8) over a fixed volume V, bounded by the sur-
face of the ray tube under consideration and its two end-sections o, and
0y. Since the volume V does not change with time, we obtain

%VgnedV=o

Using Equation (1.10) and the assumption made above concerning the
character of the distribution of the parameters of the gas in the zone
of disturbed motion, we have
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_d Mugp? o

T pad (1.14)

Here A denotes the wave lenght in the approximation of geometrical
acoustics, and p’ the pressure increment at the shock-front.

The quantity
Aug, p®
E = 1 _f.‘_.___.

3 Poge®

is the total energy of an elementary acoustic impulse contained within
the ray tube of cross-sectional area o. The equation written above there-
fore shows that the total energy of each elementary impulse remains con-
stant in the present approximation. An analogous derivation is given in
(18] for waves propagating in a quiescent medium.

We note that the wave length A in the acoustic approximation is equal
to [9]

A=Ay :;’; (1.15)

Integration of Equation (1.14) using the last relation leads to Equa-
tion (1.12).

We consider now the motion of a shock-wave of small amplitude in the
approximation beyond that of geometric acoustics. In this approximation
the speed of a shock-front is different from the speed of propagation of
an acoustic wave, and its amplitude is damped according to a different
law than (1.12) or (1.13). Zel’dovich observed [16], that the damping of
a plane shock-wave in a straight tube is entirely determined by the dis-
sipation of energy arising from wave compression. In [18] it was shown
that the law of damping of a shock-wave of arbitrary form that propagates
in a nonhomogeneous quiescent medium is also directly related to the
quantity of acoustic energy irreversibly transformed into heat. We show
that this fact is general; that is, the nonlinear laws of damping of
shock-wave in arbitrarily moving media are explained by the dissipation
of energy arising at shock transitions.

2. Dissipation of energy at a shock-front. To simplify the
calculations we will assume as before that the perturbation quantities
in the acoustic impulse bounded by the shock-front have triangular pro-
files. Let p_ ' denote the amplitude of the shock-wave and A  the length
of the impulse in the approximation beyond geometrical acoustics. Using
the results obtained, we can show that the amplitude p ' of the shock-
wave is determined by the Formula (8) to (10).
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: mo ¥V agdl ‘.
s , 4/ Potofo Yoo pou Joc mVa /a
.= Po Poocoo”f gy (1 Ao VPooaoo’ S Uottgy, ¥ Pof (2.1)

b

Here dl is the element of length of the ray, equal to u,dt. The wave
length A varies according to the Equation (9) to (10)

.

M= Ao (142 o V 7 i mo ¥ aodly® (2.2)

Yoon M meaog i uouoi V-E;;

We calculate the change in unit time of the total energy of an element-
ary acoustic impulse contained within the ray tube of cross-sectional
area o. The area f of the shock-front bounded by this tube is related to
o by Equation (1.10), so that the total energy E_ of the acoustic impulse
with triangular profile for the pressure increment is, according to the
results of the preceding section, equal to

E f——1 .—;— _A"'fuonfli
* Podo
According to relations (2.1) and (2.2) this expression can be trans-
formed into the form

w

1 Po’vofou (1 n Poluogn Vf_; § mg Va—odl )~'/.

3 Ao V Pooy? 3 Uolhon V pof

pOanq i
The change in energy of the impulse under consideration is determined
by the derivative dE‘/dt, whose value is easily calculated using Equation
(2.1). We have finally
dE 1 mysy,

* — —

J— 3
dt 6  polaot v,

(2.3)

We show that this change in energy of an elementary acoustic impulse
is proportional to the magnitude of its dissipation at the shock com-
pression. The value of this dissipation, produced by viscosity and heat
conduction, may be calculated within the framework of an ideal fluid
using the entropy change s ' that occurs at the shock-front. The value
of s.' is a quantity of third order of smallness with respect to the
pressure increment p", given by the equation

. 1 my ,3

$.7= 6 pe2aiT,

Using this relation we find the energy that is dissipated in the form
of heat in unit time at an element of the shock-front of area f. Let Q,
denote the dissipated energy. Its change in unit time is evidently glven
by the equation
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dQy 1 my

a = & paar P . (2.4)

which agrees, except for a factor u,,/ @, taken with reversed sign, with
the expression appearing on the right-hand side of Equation (2.3). As
was already observed above, the value of the energy demsity e of an
acoustic wave differs by this factor when propagating in a quiescent and
a moving medium; at the same time Equation (2.4) for dQ,/dt always main-
tains its same form. In fact, in the expression for the flux of mass
across a shock-front there appears the normal component of the velocity
vector of particles in a system of coordinates moving with the discon-
tinuity surface.

For weak shock-waves this velocity component agrees to a first
approximation with the speed of sound a,. When v, = 0, then
PP p 0 0

dE, | dt = — dQ, | dt

We now invert our reasoning so that, avoiding the calculation of the
pressure increment p*' in the approximation of geometric acoustics, we
can immediately find the law of damping of shock-waves of small ampli-
tude moving in nonhomogeneous media. The change in energy of an element-
ary acoustic impulse of length A, contained within a ray tube of [cross-
sectional area o and having at the front a pressure increment p is de-
termined on the basis of the equations given above as

_d_(}'»-u(mf /2) ___“_i_bmouon 73
dt poaos * 2 po2a04 *

(2.5)

The quantity A_ appearing here satisfies the relation [10]

dA, A, dityy, 1 mg _,
o a2 7 P P (2:6)

dt u

The system of ordinary differential equations (2.5) and (2.6) should
be integrated with the initial conditions

p,* == p’o’ ?\'* == ;&0 at t=t0 (2.7)

The solution of the system of Equations (2.5) and (2.6) satisfying
the conditions (2.7) can be obtained in an elementary way. We divide the
first of these equations by the quantity A fhﬁnp 2/(p0a03) and the
second by A . Combining the resulting expressions we find

d

e In v

fugnh, 20,k d
o, = v In Uon
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Integrating the previous equation, taking account of the initial con-
ditions, gives

Poad’fo. 2.8)

Poocoo®f

Ap',= APl

This relation expresses the law of variation of the impulse
J, =122 JP, "/uy, of an element of positive phase of the wave in its
motion along the ray tube.

We now multiply Equation (2.6) by A_, replacing the product A‘p by
Expression (2.8). As a result we obtain a linear equation in R

2 2! d"on mohop’o V aofo

dt T gy V poau®pof
Using the initial conditions, we obtain as a solution of the preceding
equation Formula (2.2), determining the wave length A, The pressure in-
crement p_ ' at the shock-front is found, with the use of (2.8), in the
form (2. 1)

3. Steady flows. As was shown in [14], the results obtained above
for unsteady shock-waves propagating in a nonhomogeneous medium cannot
be applied immediately to the calculation of steady supersonic gas motion.
For steady supersonic flow, which by definition is characterized by the
condition 9/9t = 0, we have

ay+ven =0 (3.1)

In this case the rays lie wholly on the characteristic surface
¢(x;) = 0, whereas for unsteady processes of expansion waves the rays
intersect their front ¢(¢, z;) = 0 in the x, space, never being tangent
to these surfaces.

We denote by n; the unit vector normal to the characteristic surface
carrying the zero value of pressure increment. The equation governing
the change in width of the disturbed region, which by analogy with un-
steady motion we will also call the wave length and denote by the letter
A, has within the framework of geometrical acoustics the form [14]

= A @,7) (@ + ven) (3.2)

The value of the ray speed u, for steady flow is \J(vo - a, ?); there-
fore in Equation (3.2) the t1me t 1s connected with the length | of the
ray by the relation dl = \](v0 - a, 2)dt. We note that the solution of
this equation is not, generally speaking, given by Equation (1.15), which
determines the wave length in unsteady processes. Equation (1.12) for the
change of amplitude of an acoustic wave in unsteady processes likewise
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cannot be used immediately for the calculation of steady supersonic flows.
In fact, in this case according to Equation (3.1) both the quantities
ug, and u,, vanish, and Equation (1.12) loses its significance.

In order to obtain the law of variation of the pressure increment p’
along a shock-wave far from a body in a steady supersonic stream, we turn
again to the result of Equation (1.6). Using the relation (3.2), we trans-
form it to

. . aoohp’®
v A = —= —
div (agn + vy)e = 0, €= 3o (3.3)
llere e denotes as before the density of acoustic energy. We note that
to within the constant f§ctor %o Yoon Fhe energy densitynuOHp'z/(goaos)
of unsteady acoustic motion may be put in the same form with the aid of
Equation (1.15). The density of energy of waves propagating in a fixed
medium differs from the expression for energy density in the present case
by the factor Aay,/A a,.

Integration of Lquation (3.3) leads to Equation {1.9), from which
follows the law for the variation of the amplitude p' of a wave in the
acoustic approximation:

P s Qo Poltoligohodo 3
4 Po ago pmamuo;.ﬁ (t .4)

Here, as before, o denotes the cross-sectional area of an elementary
ray tube.

Henceforth, as in the case of unsteady wave motion, we will assume for
simplicity that in the disturbed region bounded by the shock-front all
perturbation quantities have triangular profiles. Henceforth we will de-
note by p’ the pressure increment at the shock-wave. We now take, on the
characteristic surface carrying the undisturbed values of the gas para-
meters, an arbitrary point that we use as the origin for the ray passing
through it. Through the chosen point we pass a plane perpendicular to the
ray direction, and in this plane we construct a small c¢losed contour con-
sisting of the line of its intersection with the shock-wave and the
characteristic surface where p' = 0, and also of two neighboring normals
to the indicated surface. We consider the ray tube whose generators pass
through the sides of the rectangle consisting of the contour we have con-
structed. It is evident that the cross-section of such a tube has at any
point the form of a parallelogram; its area can be identified with the
quantity o in Equation (3.4), since the width of the disturbed region is
regarded as small compared with the principal radii of curvature of the
shock-front and the distance at which the parameters of the basic stream
are essentially changed. We now introduce on the characteristic surface
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carrying zero values of p’ a small rectangle, one of whose sides serves
as a side of the closed contour considered earlier. The rectangular
cylinder with generators parallel to the normal to the characteristic
surface bounds in the ray tube under consideration a certain element of
the wave. This element as a whole is carried along the ray in the first
approximation with speed u,, and deforming acquires the shape of a
parallelopiped. The dimensions of the parallelopiped in the ray direction
change proportional to the ray speed u,.

If as before we denote by f, the frontal area of an element of the wave,
the following relation is easily seen to hold

Hod __ YooGo
AT Mfo

Using this, we can put Equation (3.4) into the form

r ! aOM Poﬂofo (3 5)

P =P ogeh PooGoof

We note that Fxpression (1.12) is transformed to the same form using
Equation (1.15).

We show that the form of Equation (3.5) is not dependent upon the
chosen form of the wave element. In fact, we consider an element of the
wave bounded by an arbitrary cylindrical surface with generators initial-
ly parallel to the normal to the characteristic surface carrying the un-
disturbed values of the parameters of the gas. We integrate FEquation
(3.3) over the volume of the element under consideration, which is con-
tinuously deformed as it moves along the ray tube. Taking into account
the assumption made above regarding the character of the distribution of
the gas parameters in the disturbed flow region, we have

A awlpt
dt 7»090‘13

Integration of this equation, which is analogous to Equation (1.14),
leads to Equation (3.5).

This thus shows that also in the case of steady gas motion the ray
tube is a channel for the transmission of energy in the disturbed flew
zone.

The factor L appearing in Keller's equation (1.13) takes the form

g0 Augs . agoh /
ao Aouoo3o aoho fo

We turn now to the investigation of the law of damping of a shock-wave
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far from a body in steady supersonic flow in the approximation beyond
geometrical acoustics,

Using the results obtained, we have [14]

— 1 1/,
" o ¥ o
P.=p 0% Polo/o (1 4 Zoho ¥ fo‘ My V“odl ) (3.6)

Pottoofo0 Vv Post, 1, uoh? V pof -
- A
x — ;‘ (1 Po;uo Vfo ny Vaodl 3‘
* ~'/ 000“00 \n uo)g VPOI ) ( 7)

llere, as in the preceding section, asterisks indicate values of the
gas parameters in the approximation beyond acoustiecs, A denotes the wave
length in linear theory, and dl = u,dt.

The total energy E of an element of the wave with a triangular profile
of pressure incrementis equal to

1 haw /P
E* = lo el iy 03

In accordance with Equations (3.6) and (3.7), we transform this rela-
tion into the form

H o —
_ 1 péhfe PV ¢ moVagdi \ ™
E = 3 2 1+ 1Y oof
Pooal, Vowsd, § 4V eof
The change of energy in unit time for the element of the wave under
consideration is given by the derivative

]

dE, _ 1 aphmof 3
dt B Aopotagd (3’8)

This expression, taken with reversed sign, agrees to within a factor
Aoo“/xoao with the value (2.1) of the derivative dQ*/dt, which determines
the dissipation of energy at a shock-front of area f. As noted above, the
value of energy density differs by this factor in steady flow from the
value for an acoustic wave passing through a quiescent medium. When the
oncoming stream is uniform, Aano/ﬁoao =1,

Reversing the line of reasoning as in the previous section, we can ob-
tain the law of damping of a shock-wave far from a body in a flow with-
out calculating p’ in the approximation of geometrical acoustics. We will
not dwell upon the corresponding calculations in detail.

In conclusion we consider supersonic flow past a body in a stream with
constant velocity v, whose other parameters depend upon the coordinate
x5 measured along one of the axes perpendicular to v,. Such a case can be
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found, for example, when a body moves in a quiescent atmosphere parallel
to the plane of the earth, and the density, pressure, and temperature of
the air depend only on altitude. For simplicity all phenomena are de-
scribed in a system of coordinates moving with the body, where the flow
is steady; but for the calculation of the wave length A in the approxima-
tion of geometrical acoustics it is convenient to change to non-moving
coordinates connected with the earth. Then A is given by Equation (1.15)

u(m (33)

%oan

and not by the more complicated solution of Equation (3.2). Of course
one expression for A can be transformed into the other, so that it is
easy to convince oneself immediately that they check. In the present

case Fquation (3.2) takes the form

d)

A
A

However, the operator (aoﬂv) is, as shown in Section 1, an ordinary
derivative along a ray in a system of coordinates related to the earth.

Teking now d/dt to mean a derivative in this system of coordinates,
we transform the preceding equation to

ah _ b da
dt ap dt

From this Equation (3.9) follows again.

Equation (1.15) for A can be used whenever the change to the system
of coordinates in which the body is moving does not violate the steadi-
ness of the initial flow. However, the proof that this equation gives
the solution of Equation (3.2) is very complicated in the general case.
Without giving the corresponding arguments, we point out that it rests
essentially on the connection with the equations of the bicharacter-
istics (1.7).

The author is indebted to G.I. Darenblatt for interest in the work
and discussion of the results obtained.
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